Graphes et Recherche Opérationnelle

MÉTHODE DU SIMPLEXE

$$(PL) : \max_{x \in \mathbb{R}^n} \left[F(x) = c^{\top} x \right]$$

$$Ax = b$$

$$x > 0$$

avec la matrice $A \in \mathcal{M}_{m \times n}$ (n variables, m contraintes). On dispose d'une base B avec la décomposition

$$x = \begin{pmatrix} x_B \\ x_H \end{pmatrix}, \ x_B \in \mathbb{R}^m, \ x_H \in \mathbb{R}^{n-m}$$

 $A = (I_m \mid A_H)$ (forme simpliciale)

1 Simplexe en phase 2 (sans variable artificielle)

• Coûts réduits

Soit \underline{x} une solution de base réalisable associée à la base B (i.e. $\underline{x}_B = b$ et $\underline{x}_H = 0$).

$$F(x) = F(\underline{x}) + L_H^{\top} x_H$$
$$L_H^{\top} = c_H^{\top} - c_B^{\top} A_H$$

• Variable entrante $x_e \in x_H$.

$$x_e \leftarrow \max_j [(L_H)_j, \text{ avec } (L_H)_j > 0]$$

Remarque: si on cherche $\min_x F(x)$, alors $x_e \leftarrow \min_j [(L_H)_j, \text{ avec } (L_H)_j < 0]$

• Variable sortante $x_s \in x_B$.

$$x_s \leftarrow x_e = \min_j \left[\frac{b_j}{a_{j,e}}, \text{ avec } a_{j,e} = (A_H)_{j,e} > 0 \right]$$

• Retour à un système simplicial

CHANGEMENT DE BASE :
$$\widetilde{B} = B + \{e\} - \{s\}$$

$$\widetilde{H} = H - \{e\} + \{s\}$$

RÉÉCRITURE DANS LA NOUVELLE BASE : $A = [I_m \mid A_H] \ \Rightarrow \ \left[A_{\widetilde{B}} \mid A_{\widetilde{H}}\right] = A'.$

$$Ax = b \Leftrightarrow (I_m \mid \widetilde{A}_{\widetilde{H}})x = A_{\widetilde{B}}^{-1}b = \widetilde{b} \text{ avec } \overline{\widetilde{A}_{\widetilde{H}}} = A_{\widetilde{B}}^{-1}A_{\widetilde{H}}$$

MISE À JOUR DES COÛTS RÉDUITS :

$$\widetilde{F}_{opt} = F_{opt} + (L_H)_e \, \widetilde{b}_s$$

$$\boxed{\widetilde{L}_{\widetilde{H}}^{\top} = L_{\widetilde{H}}^{\top} - (L_H)_e \left[\widetilde{A}_{\widetilde{H}} \right]_s}$$

où $\left[\widetilde{A}_{\widetilde{H}}\right]_s$ désigne la ligne s de la matrice $\widetilde{A}_{\widetilde{H}}.$

• Tableau du simplexe à l'étape k

	x_B	x_H		
$B_k = A_{\widetilde{B}}^{-1}$ \downarrow $\text{étape } k+1$	I_m	A_H	b	
	\overline{L}_B	\overline{L}_H	\overline{F}	\leftarrow étape $k-1$
		L_H	F	

2 Cas d'arrêt du simplexe en phase 2

A chaque étape du simplexe sur (PL) :

- Si $L_H < 0$ alors optimum unique atteint \rightarrow arrêt.
- Si $L_H \leq 0$ alors
 - Si $(L_H)_e = 0$ et $x_e > 0$ alors optimum non-unique \rightarrow arrêt.
 - Si $(L_H)_e = 0$ et $x_e = 0$ alors optimum unique (base dégénérée) \rightarrow arrêt.
- Si $(L_H)_e > 0$ et x_e est non-bornée alors pas d'optimum fini \to arrêt.

3 Variables artificielles (simplexe en phase 1)

Variables artificielles $a = (a_1, \dots, a_m)$.

Problème auxiliaire :

(PLA) :
$$\min \left[F_{\text{aux}} = \sum_{i=1}^{m} a_i \right]$$

 $Ax + a = b$
 $x \ge 0, \quad a \ge 0$

Cas d'arrêt du simplexe en phase 1 :

A chaque étape du simplexe sur (PLA) :

- Si $F_{\text{aux}} = 0$ et $\not\exists a_j \in x_B$ alors solution réalisable obtenue pour (PL) (fin normale) \rightarrow passage à la phase 2.
- Si $F_{\text{aux}} = 0$ et $\exists a_j \in x_B$ avec $a_j = 0$ alors équations redondantes \rightarrow suppression des lignes et colonnes associées à a_j et passage à la phase 2.
- Si $F_{\text{aux}} > 0$ alors pas de solution réalisable pour $(PL) \to \text{arrêt}$.

4 Analyse post-optimale

 B^* base optimale

Conditions d'optimalité : $L_{H^*}^\top = c_{H^*}^\top - L_{B^*}^\top A_{H^*}^* \le 0$ où A^* est la matrice du dernier tableau du simplexe. Conditions de faisabilité : $x_{B^*} = A_{B^*}^{-1}b \ge 0$.

5 Dualité et COPD

$$\begin{array}{c|c} \boxed{\text{Primal}} & \boxed{\text{Dual}} & \boxed{\text{COPD}} \ (x^* \text{ et } y^* \text{ sol. optimales}) \\ \\ \max_{x \in \mathbb{R}^n} \left[F(x) = c^\top x \right] & \min_{y \in \mathbb{R}^m} \left[G(y) = b^\top y \right] \\ Ax \leq b & y \geq 0 \\ x \geq 0 & A^\top y \geq c \end{array} \quad \begin{cases} \sum_{j=1}^n a_{ij} x_j^* < b_i \Rightarrow y_i^* = 0 \\ \sum_{j=1}^n a_{ij} x_j^* < b_i \Rightarrow x_j^* = 0 \\ \sum_{i=1}^n a_{ij} y_i^* > c_j \Rightarrow x_j^* = 0 \end{cases} \quad \text{et} \begin{cases} y_i^* > 0 \Rightarrow \sum_{j=1}^n a_{ij} x_j^* = b_i \\ x_j^* > 0 \Rightarrow \sum_{i=1}^n a_{ij} y_i^* = c_j \end{cases}$$

2